Signetics

Linear Products

DESCRIPTION

The 5532 is a dual high-performance low noise operational amplifier. Compared to most of the standard operational amplifiers, such as the 1458, it shows better noise performance, improved output drive capability and considerably higher small-signal and power bandwidths.

This makes the device especially suitable for application in high-quality and professional audio equipment, instrumentation and control circuits, and telephone channel amplifiers. The op amp is internally compensated for gains equal to one. If very low noise is of prime importance, it is recommended that the 5532A version be used because it has guaranteed noise voltage specifications.

NE/SE5532/5532A Internally-Compensated Dual Low Noise Operational Amplifier

Product Specification

FEATURES

- Small-signal bandwidth: 10MHz
- Output drive capability: 600Ω, 10V_{RMS}
- Input noise voltage: 5nV/√Hz (typical)
- DC voltage gain: 50000
- AC voltage gain: 2200 at 10kHz
- Power bandwidth: 140kHz
- Slew rate: 9V/μs
- Large supply voltage range: ±3 to ±20V
- Compensated for unity gain

PIN CONFIGURATIONS

EQUIVALENT SCHEMATIC (EACH AMPLIFIER)

_

Internally-Compensated Dual Low Noise **Operational Amplifier**

NE/SE5532/5532A

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE			
8-Pin Plastic DIP	0 to 70°C	NE5532N			
8-Pin Ceramic DIP	0 to 70°C	NE5532FE			
8-Pin Plastic DIP	0 to 70°C	NE5532AN			
8-Pin Ceramic DIP	0 to 70°C	NE5532AFE			
8-Pin Ceramic DIP	-55°C to +125°C	SE5532FE			
8-Pin Ceramic DIP	~55°C to +125°C	SE5532AFE			
16-Pin Plastic SOL	0 to 70°C	NE5532D			

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
Vs	Supply voltage	± 22	V
VIN	Input voltage	± V _{SUPPLY}	v
VDIFF	Differential input voltage ¹	± 0.5	V
TA	Operating temperature range NE5532/A SE5532/A	0 to 70 -55 to +125	ာ ကိ
T _{STG}	Storage temperature	-65 to +150	°C
Tj	Junction temperature	150	°C
PD	Maximum power dissipation, T _A = 25°C, (still-air) ² N package F package D package	1200 1000 1200	mW mW mW
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C

NOTES:

1. Diodes protect the inputs against over-voltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ± 10mA.

2. Thermal resistances of the above packages are as follows: N package at 100°C/W.

F package at 135°C/W.

D package at 105°C/W.

4-101

Internally-Compensated Dual Low Noise Operational Amplifier

NE/SE5532/5532A

SYMBOL			SE5532/5532A			NE5532/5532A			1
	PARAMETER	TEST CONDITIONS	Min	Тур	Max	Min	Тур	Max	UNIT
Vos	Offset voltage			0.5	2		0.5	4	mV
AV / AT		Over temperature		-	3		-	5	mV
				5			5		μν/-Ο
los	Offset current				100		10	150	nA
$\Delta los/\Delta T$		Over temperature		200	200		200	200	DA/°C
10		+	+	200	400		200	800	nA
в	mpat barront	Over temperature		200	700		200	1000	nA
$\Delta I_{B}/\Delta T$				5			5		nA/°C
	Supply auront			8	10.5		8	16	mA
'cc	CC Supply current	Over temperature			13				mA
VCM	Common-mode input range		±12	±13		± 12	±13		v
CMRR	Common-mode rejection ratio		80	100		70	100		dB
PSRR	Power supply rejection ratio			10	50	-	10	100	μV/V
		$R_L \ge 2k\Omega, V_O = \pm 10V$	50	100		25	100		V/mV
Avo	Large-signal voltage gain	Over temperature	25			15			V/mV
		$R_L \ge 600\Omega, V_O = \pm 10V$	40	50		15	50		V/mV
		Over temperature	20			10			v/mv
		$R_L \ge 600 \Omega$	± 12	± 13		± 12	± 13		V
		Over temperature	± 10	± 12		± 10	± 12		v
VOUT	Output swing	$H_L \ge 60032$, $V_S = \pm 18V$	± 15	± 16		1 1 15	± 16		, v
			+ 12	+ 12 5		+12	+ 12 5		v
		Over temperature	±12	± 12.5		± 10	± 12.5		v
BIN	Input resistance		30	300		30	300		kΩ
		+	+	1 00		10			

DC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = \pm 15V$, unless otherwise specified.^{1, 2, 3}

NOTES:

1. Diodes protect the inputs against overvoltage. Therefore, unless current-limiting resistors are used, large currents will flow if the differential input voltage exceeds 0.6V. Maximum current should be limited to ± 10mA.

2. For operation at elevated temperature, derate packages based on the package thermal resistance.

 Output may be shorted to ground at V_S = ± 15V, T_A = 25°C. Temperature and/or supply voltages must be limited to ensure dissipation rating is not exceeded. ----

Internally-Compensated Dual Low Noise Operational Amplifier

NE/SE5532/5532A

AC ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = \pm 15V$, unless otherwise specified.

			NE/SE5532/5532A				
SYMBOL	PAHAMETER	TEST CONDITIONS	Min	Min Typ Mi			
R _{OUT}	Output resistance	$A_V = 30$ dB Closed-loop f = 10kHz, R _L = 600 Ω	0.3			Ω	
	Overshoot	Voltage-follower $V_{IN} = 100 \text{mV}_{P,P}$ $C_L = 100 \text{pF}, R_L = 600 \Omega$		10		%	
Av	Gain	f = 10kHz	2.2			V/mV	
GBW	Gain bandwidth product	$C_{L} = 100 pF, R_{L} = 600 \Omega$		10		MHz	
SR	Siew rate			9		V/µs	
	Power bandwidth	$V_{OUT} = \pm 10V$ $V_{OUT} = \pm 14V, R_L = 600\Omega,$ $V_{CC} = \pm 18V$		140 100		kHz kHz	

ELECTRICAL CHARACTERISTICS $T_A = 25^{\circ}C$, $V_S = \pm 15V$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS	N	NE/SE5532			/SE553		
			Min	Тур	Max	Min	Тур	Max	UNIT
V _{NOISE}	Input noise voltage	f _O = 30Hz f _O = 1kHz		8 5			8 5	12 6	nV/√Hz nV/√Hz
INOISE	Input noise current	f _O = 30Hz f _O = 1kHz		2.7 0.7			2.7 0.7		pA/√Hz pA/√Hz
	Channel separation	$f = 1 \text{kHz}, R_S = 5 \text{k}\Omega$		110			110		dB

Internally-Compensated Dual Low Noise Operational Amplifier

NE/SE5532/5532A

TYPICAL PERFORMANCE CHARACTERISTICS

Internally-Compensated Dual Low Noise Operational Amplifier

NE/SE5532/5532A

TEST CIRCUITS

