Silicon Power Transistors

The MJW21195 and MJW21196 utilize Perforated Emitter technology and are specifically designed for high power audio output, disk head positioners and linear applications.

Features

- Total Harmonic Distortion Characterized
- High DC Current Gain h_{FE} = 20 Min @ I_C = 8 Adc
- Excellent Gain Linearity
- High SOA: 2.25 A, 80 V, 1 Second
- Pb-Free Packages are Available*

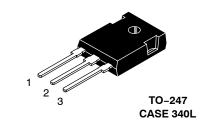
MAXIMUM RATINGS

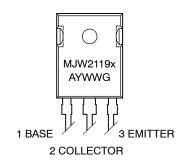
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V_{CEO}	250	Vdc
Collector-Base Voltage	V _{CBO}	400	Vdc
Emitter-Base Voltage	V _{EBO}	5.0	Vdc
Collector-Emitter Voltage - 1.5 V	V _{CEX}	400	Vdc
Collector Current - Continuous - Peak (Note 1)	I _C	16 30	Adc
Base Current - Continuous	I _B	5.0	Adc
Total Power Dissipation @ T _C = 25°C Derate Above 25°C	P _D	200 1.43	W W/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	0.7	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	40	°C/W

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.


1. Pulse Test: Pulse Width = 5 μs, Duty Cycle ≤ 10%.


ON Semiconductor®

http://onsemi.com

16 AMPERES COMPLEMENTARY SILICON POWER TRANSISTORS 250 VOLTS, 200 WATTS

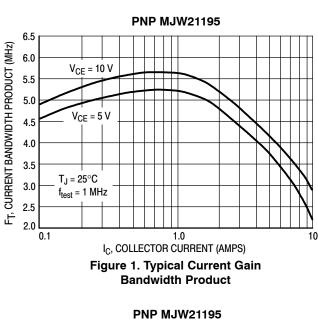
MARKING DIAGRAM

x = 5 or 6

A = Assembly Location

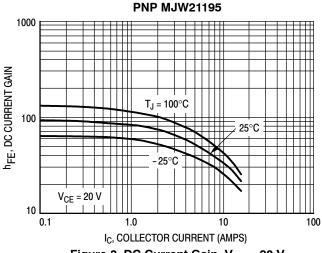
Y = Year WW = Work Week G = Pb-Free Package

ORDERING INFORMATION


Device	Package	Shipping
MJW21195	TO-247	30 Units/Rail
MJW21195G	TO-247 (Pb-Free)	30 Units/Rail
MJW21196	TO-247	30 Units/Rail
MJW21196G	TO-247 (Pb-Free)	30 Units/Rail

^{*}For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)


Characteristic		Symbol	Min	Typical	Max	Unit
OFF CHARACTERISTICS						•
Collector–Emitter Sustaining Voltage ($I_C = 100 \text{ mAdc}, I_B = 0$)		V _{CEO(sus)}	250	-	_	Vdc
Collector Cutoff Current (V _{CE} = 200 Vdc, I _B = 0)		I _{CEO}	_	_	100	μAdc
Emitter Cutoff Current (V _{CE} = 5 Vdc, I _C = 0)		I _{EBO}	_	_	50	μAdc
Collector Cutoff Current (V _{CE} = 250 Vdc, V _{BE(off)} = 1.5 Vdc)		I _{CEX}	_	_	50	μAdc
SECOND BREAKDOWN						
Second Breakdown Collector Current with Base Forward Biaser (V _{CE} = 50 Vdc, t = 1 s (non-repetitive) (V _{CE} = 80 Vdc, t = 1 s (non-repetitive)	d	I _{S/b}	4.0 2.25		- -	Adc
ON CHARACTERISTICS						
DC Current Gain ($I_C = 8$ Adc, $V_{CE} = 5$ Vdc) ($I_C = 16$ Adc, $I_B = 5$ Adc)		h _{FE}	20 8	-	80 -	
Base–Emitter On Voltage (I _C = 8 Adc, V _{CE} = 5 Vdc)		V _{BE(on)}	_	-	2.0	Vdc
Collector–Emitter Saturation Voltage ($I_C = 8$ Adc, $I_B = 0.8$ Adc) ($I_C = 16$ Adc, $I_B = 3.2$ Adc)		V _{CE(sat)}	_ _	- -	1.0 3	Vdc
DYNAMIC CHARACTERISTICS						
Total Harmonic Distortion at the Output $V_{RMS} = 28.3 \text{ V}, f = 1 \text{ kHz}, P_{LOAD} = 100 \text{ W}_{RMS}$	h _{FE} unmatched	T _{HD}	-	0.8	-	%
(Matched pair h _{FE} = 50 @ 5 A/5 V)	h _{FE} matched		-	0.08	-	
Current Gain Bandwidth Product (I _C = 1 Adc, V _{CE} = 10 Vdc, f _{test} = 1 MHz)		f _T	4	-	-	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 MHz)		C _{ob}		-	500	pF

TYPICAL CHARACTERISTICS

NPN MJW21196 7.5 F_T , CURRENT BANDWIDTH PRODUCT (MHz) 7.0 V_{CE} = 10 V 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 $T_J=25^{\circ}C$ 2.5 $f_{test} = 1 \text{ MHz}$ 2.0 1.5 1.0 1.0 I_C, COLLECTOR CURRENT (AMPS) 0.1 10

Figure 2. Typical Current Gain Bandwidth Product

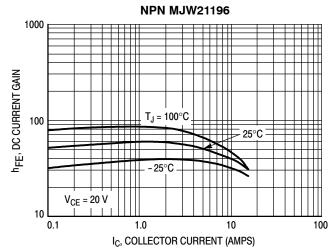
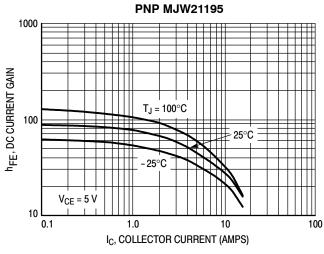



Figure 3. DC Current Gain, V_{CE} = 20 V

Figure 4. DC Current Gain, V_{CE} = 20 V

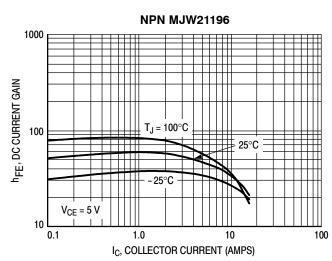


Figure 5. DC Current Gain, V_{CE} = 5 V

Figure 6. DC Current Gain, $V_{CE} = 5 \text{ V}$

TYPICAL CHARACTERISTICS

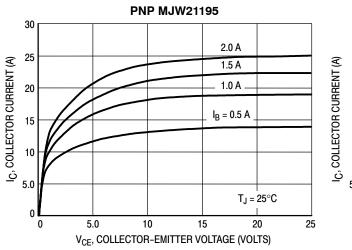


Figure 7. Typical Output Characteristics

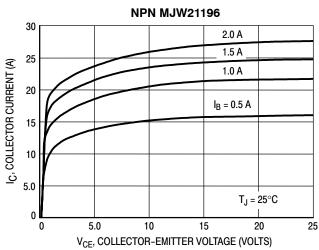


Figure 8. Typical Output Characteristics

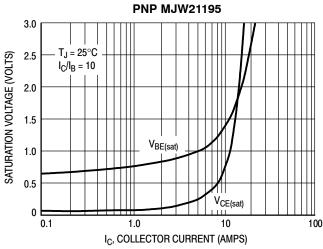


Figure 9. Typical Saturation Voltages

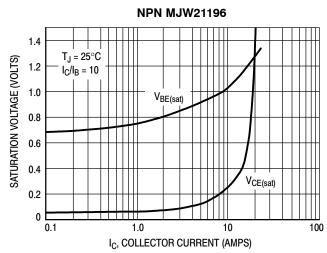


Figure 10. Typical Saturation Voltages

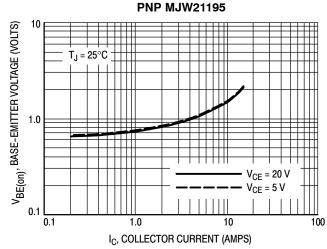


Figure 11. Typical Base-Emitter Voltage

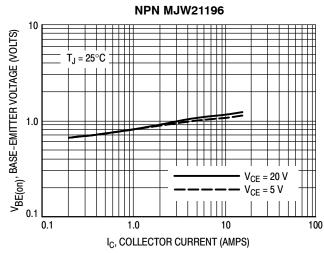


Figure 12. Typical Base-Emitter Voltage

There are two limitations on the power handling ability of a transistor; average junction temperature and secondary breakdown. Safe operating area curves indicate I_C – V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 13 is based on $T_{J(pk)}$ = 150°C; T_C is variable depending on conditions. At high case temperatures, thermal limitations will reduce the power than can be handled to values less than the limitations imposed by second breakdown.

TYPICAL CHARACTERISTICS

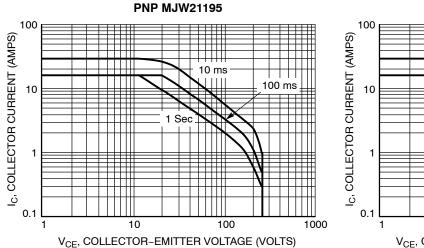


Figure 13. Active Region Safe Operating Area

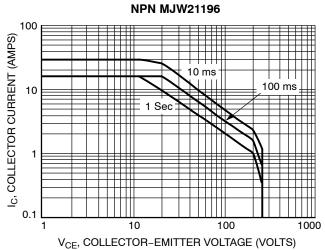


Figure 14. Active Region Safe Operating Area

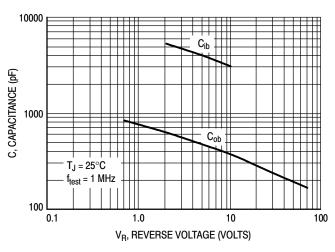


Figure 15. MJW21195 Typical Capacitance

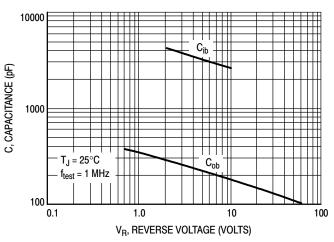


Figure 16. MJW21196 Typical Capacitance

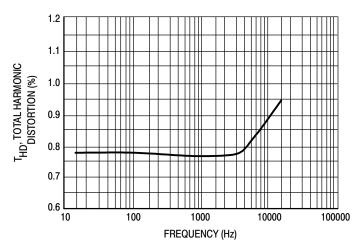


Figure 17. Typical Total Harmonic Distortion

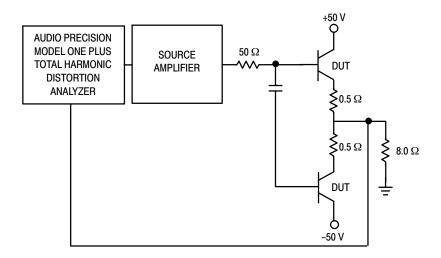
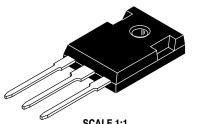
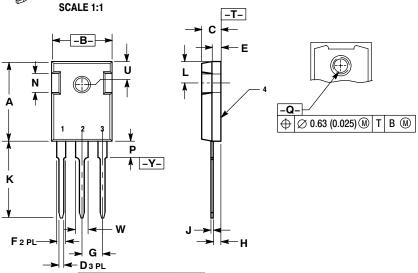
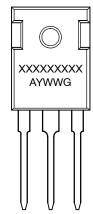




Figure 18. Total Harmonic Distortion Test Circuit

TO-247 CASE 340L-02 ISSUE F

DATE 26 OCT 2011

STYLE 2: PIN 1. ANODE 2. CATHODE (S) STYLE 4:
PIN 1. GATE
2. COLLECTOR
3. EMITTER
4. COLLECTOR STYLE 1: PIN 1. GATE 2. DRAIN STYLE 3: PIN 1. BASE 2. COLLECTOR 3. SOURCE 4. DRAIN 3. ANODE 2 4. CATHODES (S) 3. EMITTER 4. COLLECTOR STYLE 5: PIN 1. CATHODE 2. ANODE 3. GATE 4. ANODE STYLE 6: PIN 1. MAIN TERMINAL 1 2. MAIN TERMINAL 2


3. GATE 4. MAIN TERMINAL 2

⊕ 0.25 (0.010) M Y Q S

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INC	HES
DIM	MIN	MAX	MIN	MAX
Α	20.32	21.08	0.800	8.30
В	15.75	16.26	0.620	0.640
С	4.70	5.30	0.185	0.209
D	1.00	1.40	0.040	0.055
Е	1.90	2.60	0.075	0.102
F	1.65	2.13	0.065	0.084
G	5.45 BSC		0.215 BSC	
Н	1.50	2.49	0.059	0.098
J	0.40	0.80	0.016	0.031
K	19.81	20.83	0.780	0.820
L	5.40	6.20	0.212	0.244
N	4.32	5.49	0.170	0.216
P		4.50		0.177
Q	3.55	3.65	0.140	0.144
U	6.15 BSC 0.242 BSC		BSC	
W	2.87	3.12	0.113	0.123

GENERIC MARKING DIAGRAM*

XXXXX = Specific Device Code = Assembly Location

Υ = Year WW = Work Week = Pb-Free Package G

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot " ■", may or may not be present.

DOCUMENT NUMBER:	98ASB15080C	Electronic versions are uncontrolled except wh	
STATUS:	ON SEMICONDUCTOR STANDARD	accessed directly from the Document Repository. Priversions are uncontrolled except when stamped	
NEW STANDARD:		"CONTROLLED COPY" in red.	
DESCRIPTION:	TO-247	PAGE 1 OI	F 2

DOCUMENT	NUMBER:
98ASB15080	C

PAGE 2 OF 2

ISSUE	REVISION	DATE
D	CHANGE OF OWNERSHIP FROM MOTOROLA TO ON SEMICONDUCTOR. DIM A WAS 20.80-21.46/0.819-0.845. DIM K WAS 19.81-20.32/0.780-0.800. UPDATED STYLE 1, ADDED STYLES 2, 3, & 4. REQ. BY L. HAYES.	25 AUG 2000
E	DIM E MINIMUM WAS 2.20/0.087. DIM K MINIMUM WAS 20.06/0.790. ADDED GENERIC MARKING DIAGRAM. REQ. BY S. ALLEN.	26 FEB 2010
F	ADDED STYLES 5 AND 6. REQ. BY J. PEREZ.	26 OCT 2011

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

© Semiconductor Components Industries, LLC, 2011 October, 2011 - Rev. 02F 340L

ON Semiconductor and the are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor and see no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:
Email Requests to: orderlit@onsemi.com

ON Semiconductor Website: www.onsemi.com

TECHNICAL SUPPORT
North American Technical Support:
Voice Mail: 1 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: a Phone: 00421 33 790 2910

Phone: 011 421 33 790 2910 For additional information, please contact your local Sales Representative