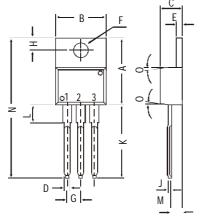

An ISO/TS16949 and ISO 9001 Certified Company


### **TO-220 Plastic Package**

CSA940, CSC2073

# CSA940 PNP PLASTIC POWER TRANSISTOR CSC2073 NPN PLASTIC POWER TRANSISTOR

Power Amplifier Applications and Vertical Output Applications





|                   | DIM | MIN.  | MAX.  |
|-------------------|-----|-------|-------|
| diminsions in mm. | Α   | 14.42 | 16.51 |
|                   | В   | 9.63  | 10.67 |
|                   | С   | 3.56  | 4.83  |
|                   | D   |       | 0.90  |
|                   | Ε   | 1.15  | 1.40  |
|                   | F   | 3.75  | 3.88  |
|                   | G   | 2.29  | 2.79  |
|                   | Н   | 2.54  | 3.43  |
|                   | J   |       | 0.56  |
|                   | K   | 12.70 | 14.73 |
|                   | L   | 2.80  | 4.07  |
|                   | М   | 2.03  | 2.92  |
|                   | N   |       | 31.24 |
| ₹                 | 0   | DEG 7 |       |

## ABSOLUTE MAXIMUM RATINGS

| Collector-base voltage (open emitter)             | $V_{CBO}$    | max. | 150 V  |
|---------------------------------------------------|--------------|------|--------|
| Collector-emitter voltage (open base)             | $V_{CEO}$    | max. | 150 V  |
| Collector current                                 | $I_C$        | max. | 1.5 A  |
| Total power dissipation up to $T_C = 25^{\circ}C$ | $P_{tot}$    | max. | 25 W   |
| Junction temperature                              | $T_{j}$      | max. | 150 °C |
| Collector-emitter saturation voltage              | J            |      |        |
| $I_C = 500 \text{ mA}; I_B = 50 \text{ mA}$       | $V_{CEsat}$  | max. | 1.5 V  |
| D.C. current gain                                 |              |      |        |
| $I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V}$     | $h_{\!F\!E}$ | min. | 40     |
|                                                   |              | max. | 140    |

# **RATINGS** (at $T_A$ =25°C unless otherwise specified)

Limiting values

Collector-base voltage (open emitter)

Collector-emitter voltage (open base)

Emitter-base voltage (open collector)  $V_{CBO}$   $V_{CEO}$   $V_{CEO}$ 

| Collector current Base current Total power dissipation up to $T_C = 25^{\circ}C$ Total power dissipation up to $T_A = 25^{\circ}C$ Junction temperature Storage temperature  CHARACTERISTICS | $I_{C}$ $I_{B}$ $P_{tot}$ $P_{tot}$ $T_{j}$ $T_{stg}$ | max.<br>max.<br>max.<br>max.<br>max.<br>–65 to | 1.5 A<br>0.5 A<br>25 W<br>1.5 W<br>150 ℃<br>+150 ℃ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|----------------------------------------------------|
| $T_{amb} = 25$ °C unless otherwise specified                                                                                                                                                 |                                                       |                                                |                                                    |
| Collector cutoff current                                                                                                                                                                     |                                                       |                                                |                                                    |
| $I_E = 0; \ V_{CB} = 120 \ V$                                                                                                                                                                | $I_{CBO}$                                             | max.                                           | $10 \mu A$                                         |
| Emitter cut-off current                                                                                                                                                                      |                                                       |                                                |                                                    |
| $I_C = 0$ ; $V_{EB} = 5 V$                                                                                                                                                                   | $I_{EBO}$                                             | max.                                           | $10 \mu A$                                         |
| Breakdown voltages                                                                                                                                                                           |                                                       |                                                |                                                    |
| $I_C = 1 \text{ mA}; I_B = 0$                                                                                                                                                                | $V_{CEO}$                                             | min.                                           | 150 V                                              |
| $I_C = 1 \text{ mA}; I_E = 0$                                                                                                                                                                | $V_{CBO}$                                             | min.                                           | 150 V                                              |
| $I_E = 1 \text{ mA}; I_C = 0$                                                                                                                                                                | $V_{EBO}$                                             | min.                                           | 5.0 V                                              |
| Saturation voltages                                                                                                                                                                          |                                                       |                                                |                                                    |
| $I_C = 500 \text{ mA}; I_B = 50 \text{ mA}$                                                                                                                                                  | $V_{CEsat}$                                           | max.                                           | 1.5 V                                              |
| Base emitter on voltage                                                                                                                                                                      |                                                       |                                                |                                                    |
| $I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V}$                                                                                                                                                | $V_{BE(on)}$                                          | min.                                           | 0.65 V                                             |
| D.G                                                                                                                                                                                          |                                                       | max.                                           | 0.85 V                                             |
| D.C. current gain                                                                                                                                                                            | ,                                                     |                                                | 40                                                 |
| $I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V}$                                                                                                                                                | $h_{\!F\!E}$                                          | min.                                           | 40                                                 |
| O to the second control of the MII                                                                                                                                                           |                                                       | max.                                           | 140                                                |
| Output capacitance at $f = 1$ MHz<br>$I_F = 0$ : $V_{CR} = 10$ V NPN                                                                                                                         | C                                                     | tr.m                                           | 25 p.E                                             |
| $I_E = 0; \ V_{CB} = 10 \ V$ NPN PNP                                                                                                                                                         | $C_{o}$                                               | typ.                                           | 35 pF                                              |
| Transition frequency                                                                                                                                                                         |                                                       | typ.                                           | 55 pF                                              |
| $I_C = 500 \text{ mA}; V_{CE} = 10 \text{ V}$                                                                                                                                                | $f_T$                                                 | typ.                                           | 4 MHz                                              |

### **Customer Notes**

### **Disclaimer**

The product information and the selection guides facilitate selection of the CDIL's Discrete Semiconductor Device(s) best suited for application in your product(s) as per your requirement. It is recommended that you completely review our Data Sheet(s) so as to confirm that the Device(s) meet functionality parameters for your application. The information furnished on the CDIL Web Site/CD are believed to be accurate and reliable. CDIL however, does not assume responsibility for inaccuracies or incomplete information. Furthermore, CDIL does not assume liability whatsoever, arising out of the application or use of any CDIL product; neither does it convey any license under its patent rights nor rights of others. These products are not designed for use in life saving/support appliances or systems. CDIL customers selling these products (either as individual Discrete Semiconductor Devices or incorporated in their end products), in any life saving/support appliances or systems or applications do so at their own risk and CDIL will not be responsible for any damages resulting from such sale(s).

CDIL strives for continuous improvement and reserves the right to change the specifications of its products without prior notice.



CDIL is a registered Trademark of Continental Device India Limited

C-120 Naraina Industrial Area, New Delhi 110 028, India.

Telephone + 91-11-2579 6150, 5141 1112 Fax + 91-11-2579 5290, 5141 1119

email@cdil.com www.cdilsemi.com